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Abstract
We study the diffusion of a particle on a random lattice with fluctuating local
connectivity of average value q. This model is a basic description of relaxation
processes in random media with geometrical defects. We analyse here the
asymptotic behaviour of the eigenvalue distribution for the Laplacian operator.
We found that the localized states outside the mobility band and observed by
Biroli and Monasson (1999 J. Phys. A: Math. Gen. 32 L255), in a previous
numerical analysis, are described by saddle-point solutions that break the
rotational symmetry of the main action in the real space. The density of
states is characterized asymptotically by a series of peaks with periodicity 1/q.

PACS numbers: 75.10.Nr, 12.40.Ee, 67.80.Mg

Diffusion on random graphs can be a useful problem for studying relaxation processes in
glassy systems in general. Usually, the disorder arises from a random potential, impurities,
but a random geometry can also play this role [2]. One can visualize the diffusion of a particle
on a random graph as the relaxation of a disordered system out of equilibrium on a complicated
energy landscape. For example, this relaxation in random Ising magnets can be identified with
diffusion on the vertices of a hypercube in the configuration space, and the edges correspond
to the energy paths that connect one configuration to another [3]. Numerical simulations [3, 4]
in Ising spin glasses of the order parameter q(t) = [〈Si(t)Si(0)〉]av, where 〈· · ·〉 is the thermal
average and [· · ·]av the average over disorder, show that this quantity follows a Kohlrausch law
similar to a ‘stretched’ exponential exp(−(t/τ )β) with 1/3 � β � 1 in the region just above
the spin glass phase. This kind of non-exponential relaxation is typical of many glassy systems
[2, 5, 6], unlike the usual exponential behaviour with only one relaxation time. The coefficient
β varies with temperature from 1 in the high-temperature phase, to 1/3 at the glassy transition.
In between, there seems to be a phase of localized states, or Griffiths phase, where β is in
between 1 and 1/3. The value 1/3 seems to be universal in many experimental systems and
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has been observed in spin glass Eu0.4Sr0.6S [7], at the glass transition of the crystalline fast ion
conductor Na β-alumina [8], or molten salts CaK(NO3) [9]. The question of the universality of
the Kohlrausch law has been raised, and exact dynamics on ultra-metric spaces [10] show that
it depends on the scaling of the barriers with the distance between different states. It could be
algebraic (linear dependence with the distance) or Kohlrausch like (logarithmic dependence).
Random graph models can also be a useful tool to study propagation of sound waves in granular
and random media [11, 12], since diffusion, quasi-diffusion and localization of sound waves
are similar to diffusion on a random network, the edges being the connections between the
particles making up the medium. Frequency response [12] for different amplitudes shows a
region of coherent propagation plus a quasi-diffusive regime. Numerical and simplified models
[13] of a granular medium for small vibration amplitudes show modes that are extended and
localized in space, like a particle moving in a random medium.

In order to simulate the glassy systems discussed above with short-range interactions
and also percolation problems, Viana, Rodgers and Bray (VRB) studied a simple model of
diffusion based on a sparse random matrix [14, 15]. Their model has the property of having
long-range interactions with dilute coordination numbers, so that on average the coordination
number is finite and we may expect to have a closer view of some experimental material. The
spectrum of eigenvalues (all positive) spreads over a continuous band, and for the particular
case of the Cayley tree model, is bounded between mobility edges, with a gap from below (see
also [16]). Recently, Biroli and Monasson (BM) [1] studied the same model numerically, and
showed that localization effects arise outside the extended region, with peaks at some regular
intervals where the inverse partition number is high, showing that these peaks are resonances
for localization. The existence of a Griffiths region was analysed by Rodgers and Bray [17]
who found a tail distribution for large eigenvalues outside the mobility band (with a random
matrix containing only elements −1, 0 and 1) but there is no peak structure in their analysis, in
contrast to BM’s numerical result. Their saddle-point solution is invariant by rotation in both
replica and real spaces and they do not discuss the possibility of rotational symmetry breaking
in at least one of these spaces. We will analyse in this letter the possibility of real space
symmetry breaking for the site-dependent fields, unlike the method of self-consistent field
equations developed in [17]. It is clear that in order to describe the localized regime, we have
to take into account this kind of solution. Our motivation is therefore to find the asymptotic
solutions in the region of the density of states outside the mobility band for VRB’s model. The
original model of relaxation in a geometrical disordered system consists of N points connected
randomly by bonds Mij = −1/q with a probability equal to q/N and Mij = 0 else. This is
an infinite range model, but the average coordination number q is finite and we may expect
that the dilute exchange interactions make the model similar to a short-range model [18].
We follow [1] and [15] for the notation. On a random lattice, a particle performs a random
walk from one point to another. Let ci(t) be the probability for the particle to be at site i at
time t. Then the master equations describing the time evolution of these amplitudes are

dci

dt
= −

∑
j

Mij cj (1)

where the probability for the symmetric elements Mij is

P(Mij ) = q

N
δ

(
Mij +

1

q

)
+
(

1 − q

N

)
δ(Mij ),

for i �= j . The diagonal elements are equal to Mii = −∑j �=i Mij . This ensures that the
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Figure 1. Probability density function P(λ) averaged over 4500 samples with N = 800 and
q = 20. The insets show oscillations at the edges of the distribution.

eigenvalues of the matrix M are all positive since the quadratic form∑
i,j

Mijxixj = − 1
2

∑
i,j

Mij (xi − xj )
2

is always positive [15]. Let λi be an eigenvalue of M, with Vi the corresponding eigenvector,
then the general solution of equation (1) is

ci(t) =
∑
j,k

(Vj )i(Vj )kck(0) exp(−λj t). (2)

If the particle is on the site m at t = 0, i.e. ci(0) = δi,m, then the probability that after a time
t the particle is found on the same site is equal to cm(t), and we can define an average probability
of return to the origin at time t after summing up over all the possible points of origin:

f (t) =
[

1

N

∑
m

cm(t)

]
av

=

 1

N

∑
m,j

(Vj )m(Vj )m exp(−λj t)




av

=

 1

N

∑
j

exp(−λj t)




av

=
∫ ∞

0
P(λ) exp(−λt) dλ, (3)

where [· · ·]av is the average over the link configurations. P(λ) is the probability distribution
function for the eigenvalues of the symmetrical matrix M. In figure 1 we have solved
P numerically by diagonalizing 4500 different samples of random matrices M with the
parameters N = 800 and q = 20 (see also [1]). Then we made an histogram of all the different
eigenvalues found and normalized the distribution. Following the results from the partition
number of [1], the distribution presents a mobility band between approximatively λ = 0.5 and
λ = 1.7 plus localization edges outside this band and containing peaks. The distribution P(λ)

can be expressed as a functional of replicated fields φα
i . Indeed, we can write

P(λ) =
[

1

N

∑
i

δ(λ − λi)

]
av

=
[

1

N
Tr δ(λ − M)

]
av

=
[
−Im

1

πN
Tr G(λ + iε)

]
av

,
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where we introduce the Green function G(λ + iε) = 1/(λ + iε − M). More precisely:

P(λ) =
[
−Im

1

πN

∂

∂λ
Tr log(λ + iε − M)

]
av

=
[
−Im

1

πN

∂

∂λ
log det(λ + iε − M)

]
av

.

The determinant can be rewritten as a Gaussian integral over fields φi, i = 1, . . . , N :

P(λ) =

Im

2

πN

∂

∂λ
log
∫ N∏

i=1

dφi exp

(
i

2

∑
i

(λ + iε)φ2
i

)
exp


− i

2

∑
i,j

φiMijφj






av

.

(4)

The average over the link configurations is performed by using replicated fields φα
i , and

we obtain (see [15] for the details):

P(λ) =
[

Im
2

πN

∂

∂λ
log Z

]
av

= lim
n→0

Im
2

πnN

∂

∂λ
[Zn]av

= lim
n→0

Im
2

πnN

∂

∂λ

∫ ∏
i,α

dφα
i exp

(
i

2

∑
i,α

(λ + iε)φα2
i

)

× exp


1

2

∑
i,j

log

[
1 − q

N
+

q

N
exp − i

2q

∑
α

(
φα

i − φα
j

)2]
= lim

n→0
Im

2

πnN

∂

∂λ

∫ ∏
i,α

dφα
i exp S

(
λ,
{
φα

i

})
. (5)

Now we want to study the asymptotic behaviour of the distribution P by evaluating the
saddle points of S in the limit λ → ∞, while we keep N large but fixed first. It seems
very similar to studying the saddle-point solutions of the extensive function S in the large-N
limit, but the difference is that we are studying the asymptotics of the distribution which does
not describe the mobility part of the curve, so the corresponding saddle points are different.
Moreover we are looking for solutions which can break the rotational space symmetry, since
we are interested in the localized regime where strong or low connectivity may contribute to
the distribution. A particle localized in one region would favour the amplitudes of the sites
inside this region. The extrema of the functional S in equation (5) are given by the set of
equations

(λ + iε)φα
i = 1

N

∑
j

(
φα

i − φα
j

)
exp
(− i

2q

∑
β

(
φ

β

i − φ
β

j

)2)
1 − (q/N) + (q/N) exp

(− i
2q

∑
β

(
φ

β

i − φ
β

j

)2) . (6)

The simplest solution is when all fields have the same value on every site φα
i = φα , which

directly leads to φα
i = φα = 0. This gives a Dirac function centred at λ = 1 and this is not an

asymptotic solution for our problem. The next step is to take φα
i = φα everywhere except on

one site i0 where φα
i0

�= φα . We obtain two equations (up to the order 1/N ):

(λ + iε)φα
i0

= N − 1

N

(
φα

i0
− φα

)
exp


− i

2q

∑
β

(
φ

β

i0
− φβ

)2 ,

(7)

(λ + iε)φα = 1

N

(
φα − φα

i0

)
exp


− i

2q

∑
β

(
φβ − φ

β

i0

)2 .
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In the large-N limit, only the field φα
i0

does not vanish
(
φα = −φα

i0

/
(N − 1)

)
, with the

length of the vector
(
φ1

i0
, . . . , φn

i0

)
satisfying the equation:

φ2
m =

∑
α

φα2
i0

= 2iq log (λ + iε) + 4πqm, and φ
β

i �=i0
� −φ

β

i0

N
, (8)

where m is an integer. There is therefore an infinite set of nonzero solutions in the complex
plane. In the following we choose the site located at i0 = 1 for simplification, since the
solution is invariant for the N − 1 other sites. For each integer m, the number of all possible
vectors with module φ2

m is equal to N2πn/
(n/2) ∼ Nn in the limit n → 0. Given the
solution (8), the value of the action is equal to

Sm = −q(λ + iε) log(λ + iε) + q(λ + iε) − q + 2iπq(λ + iε)m (9)

then P falls exponentially with λ log(λ), and the corrections to the exponential are given by
computing the fluctuations around the saddle points. Unfortunately the matrix of the second
derivatives of S at the site i0 = 1 has many zero eigenvalues and we need to consider the next
order. Indeed, we have

∂2S

∂φα
1 ∂φ

β

1

= −λ + iε

q
φα

1 φ
β

1 ,
∂2S

∂φα
i ∂φ

β

j

= i

N
δαβ, i �= j,

(10)
∂2S

∂φα
i ∂φ

β

i

= i(λ + iε − 1)δαβ, i, j �= 1.

The first matrix in (10) has (n − 1) zero eigenvalues, and we therefore have to take into
account the third derivatives at the site i0:

∂3S

∂φα
1 ∂φ

β

1 ∂φ
γ

1

= −λ + iε

q

(
φα

1 δβγ + φ
β

1 δαγ + φ
γ

1 δαβ

)
+

i(λ + iε)

q2
φα

1 φ
β

1 φ
γ

1 . (11)

The fluctuations around the saddle-point solutions φm lead to the following integrals for
the main contribution at large N:

Im(λ) =
∫ ∏

i,α

dxα
i exp


−λ + iε

2q
φα

1 φ
β

1 xα
1 x

β

1 +
i

2
(λ + iε − 1)

∑
i �=1

xα
i xα

i

+
i

2N

∑
i �=j

xα
i xα

j − λ + iε

2q
φα

1 xα
1 x

β

1 x
β

1 +
i(λ + iε)

6q2
φα

1 φ
β

1 φ
γ

1 xα
1 x

β

1 x
γ

1 + · · ·

 .

The Gaussian integration over the variables xα
i gives (2π/i(λ + iε))n(N−1)/2. In the

following we will set ε = 0, since it is not essential for the remaining calculation. It is
useful to work in the basis where the quadratic terms are diagonal. We first set φα = φmϕα

where (ϕ1, . . . , ϕn) is a real unit vector, and φm a square root of (6). The matrix ϕαϕβ

has one eigenvalue unity with eigenvector V1 = (ϕ1, . . . , ϕn) and n − 1 eigenvalues zero
with eigenvectors Vβ, β = 2, . . . , n satisfying

∑
α ϕαV β

α = 0. We then use new variables
yα = ∑β V α

β x
β

1 that diagonalize the quadratic terms. The matrix V β
α satisfies tV = V−1, so

that xα
1 =∑β V β

α yβ . After some algebra, Im can finally be written as

Im(λ) =
(

2π

iλ

)n(N−1)/2 ∫ ∏
α

dyα exp

(
− λ

2q
φ2

my2
1 − λ

2q
φmy1

∑
α

y2
α +

iλ

6q2
φ3

my3
1 + · · ·

)
.

(12)
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When n is close to zero the first coefficient on the right-hand side is unity. We then
formally integrate over yα for α �= 1, so that we are left with only one integral in the limit
n → 0:

Im(λ) =
∫

dy1

√
λφmy1

2πq
exp

(
− λ

2q
φ2

my2
1 +

λ

2q
φm

(
i

3q
φ2

m − 1

)
y3

1 + · · ·
)

. (13)

To compute this integral, we can still try to apply a saddle-point method to the function
inside the exponential. This function is proportional to λ and the first derivative vanishes for
two solutions, ya = 0 and yb = 2qφm

/(
iφ2

m − 3q
)
. The values of the second derivatives are

equal respectively to ∓λφ2
m

/
q. If we expand the integral around ya for example, we obtain

Im(λ) = (1 + i)√
π

(
2q

λ

)1/4 1

φm

∫ ∞

0
dz

√
z exp(−z2) + · · · (14)

with
∫∞

0 dz
√

z exp(−z2) = 
(3/4)/2 � 0.612 708. The density of states is finally
asymptotically equal to

P(λ) = Im
2

π

∂

∂λ

{
exp(−qλ log λ + qλ − q)

+∞∑
m=−∞

Im(λ) exp(2iπqλm)

}
. (15)

The approximation (14) is not accurate because we have considered only one saddle point,
but it basically shows that for large m, Im decreases like 1/

√|m|, so that the series in (15) is
convergent, except for the points where qλ is an integer. At these points the series diverges,
and we obtain peaks in the distribution. A more precise computation of (13) is to find a path
for which the integral is convergent. A first transformation is to make the cubic term inside
the exponential purely imaginary, so that the integral is defined on the real axis. This is done
by setting z = y1/a such that the coefficient a satisfies for example

a3

(
− λ

2q
φm +

iλ

6q2
φ3

m

)
= i. (16)

The integration path is then along the direction given by the vector a. There are three
solutions for (16), each being proportional to exp(2iπk/3), with k = 0, 1, 2. We will denote
them ak,m. Now the coefficients of the quadratic term in (13) is equal to bk,m ≡ λφ2

ma2
k,m

/
2q.

Therefore Im can expressed as

Im(λ) =
√

λφm

2πq
a

3/2
k,m exp(iσπ/4)ψσ (bk,m) (17)

with the function

ψσ (bk,m) =
√

2
∫ ∞

0
dz

√
z exp(−bk,mz2)(cos z3 + σ sin z3). (18)

where σ = ±1 has to be determined. In order for ψσ to be well defined, the real part of
bk,m should be positive. For each m, we choose k such as Re(bk,m) > 0. We have checked
numerically that there is always only one solution k(m) satisfying this condition. Moreover, for
σ = 1 the series over m in (15) vanishes numerically, so that σ = −1 gives a finite answer. We
compute numerically ψσ (bk,m) and Im(λ) for every m, and plot in figure 2 the expression (15)
in the region of localization above λ = 1.7, together with data from figure 1. The asymptotic
curve is in agreement for λ > 1.9 with the numerical results that use direct diagonalization
of random matrices over a large number of configurations. Divergences occur each time that
qλ is proportional to an integer. Near these points the saddle-point approximation may not be
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Figure 2. Probability density function P(λ) from the asymptotic form (15) superposed with the
numerical diagonalization curve from figure 1 in the large-λ region.

accurate since in the series (equation (15)) the terms are decreasing slowly with m, and we
may need more correcting terms in (13). To get a further idea on how to simplify the series,
we see that, for large λ or large m, ak,m behaves like

ak,m �
(

6q2

λ

)1/3
1

φm

exp(2iπk/3). (19)

This is a good approximation for λ � exp(
√

3/4q) ≈ 1.21 if q = 20 and m = 0. For
a ratio between the two terms inside the brackets in (16) equal to 1/10, with m = 0, we
obtain a value λ = 1.06. In this approximation, b0,m = (9qλ/2)1/3 is real and positive, and
independent of m, the other solutions have negative real parts. We then obtain the following
behaviour for large λ:

Im(λ) ≈
√

3q

π
ψσ

((
9qλ

2

)1/3
)

exp(iσπ/4)
1

φm

. (20)

We find that in this limit Im is directly proportional to the inverse of φm. The argument of
φm is

arg(φm) = 1

2
arctan

(
log λ

2πm

)
+

π

2
θ(−m), (21)

with arg(φ0) = π/4, and θ(x) is 1 for x > 0 and zero for x � 0. An approximation of the
probability distribution function is then given by

P(λ � 1) ≈
√

6

π3

∂

∂λ

{
1√|log λ| exp(−qλ log λ + qλ − q)

×ψσ

((
9qλ

2

)1/3
) ∞∑

m=−∞

sin(2πqλm − arg(φm) + σπ/4)

(1 + 4π2m2/ log2 λ)1/4

}
. (22)
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The term m = 0 gives the monotonic part of the asymptotic curve, and in order for this
term not to be zero, we have to take σ = −1. We can moreover replace ψσ by its asymptotic
value

ψσ

((
9qλ

2

)1/3
)

≈ 1√
2

(3/4)

(
2

9qλ

)1/4

. (23)

A further approximation is to replace the denominator in (22) by (1 + π2m2/ log2 λ).
The resulting function is less accurate than the numerical integration of (13), but it should be
accurate enough for very large λ. Replacing the arctan (equation (21)) by ±π/2, the series
can be summed up using standard formulae. Instead, we would like to study the behaviour of
the f (t) for large times, which is connected to the behaviour of P at small argument. Indeed,
the main contribution of the integral in (3) comes from very small λ, and therefore we need the
asymptotic behaviour of P in this region. We make the hypothesis that the saddle-point
equation (equation (6)) should still be valid for both large and small λ, since the asymptotic
solutions (equation (8)) in the two cases are the conjugates of each other using the mapping
λ → 1/λ. We might however modify the formula (equation (22)) since ψσ has a different
behaviour for small λ

ψσ

((
9qλ

2

)1/3
)

≈
√

π

3
(1 + σ) − 22/3

36

√
π


(7/12)


(11/12)

3 +
√

3

3 − √
3
(σ − 2 +

√
3)

(
9qλ

2

)1/3

(24)

and we also need to define the new arguments of the complex saddle points

arg(φm) = 1

2
arctan

(
log λ

2πm

)
− π

2
θ(−m), (25)

with arg(φ0) = −π/4. In that case, σ = 1, so that ψ1 is roughly constant for small λ

(equation (24)). This result shows that (22) should still be an asymptotic solution for small
and nonzero values of λ, with ψ1 instead of ψ−1. This may explain the oscillations seen in the
low eigenvalue region in figure 1 (inset), for 0.2 < λ < 0.5, with q = 20 and N = 800. We
can note that, despite the fact that the solutions from (8) are conjugate by λ → 1/λ, and thus
possess some symmetry, the two regions λ  1 and λ � 1 appear not to have symmetrical
asymptotic distributions, since the global distribution itself inside the mobility edges is not
symmetric.

A further study would be to make precise the physical meaning of these peaks in the
localized region, and this actually appears in the structure of the real eigenvectors (see [1]).
It may correspond to the particle trap in a region of low or high connectivity (defects) as
suggested by BM. An interesting model given by BM is a Cayley tree with a defect on the
central site, with a connectivity c instead of q + 1 for the other sites. They found some
localized states corresponding to, for example, strong c. These localized states can disappear
if a connectivity c′ for the surrounding neighbours is introduced and if c′ is small enough,
giving rise to a screening effect. Also, it is not clear however why the structure is 1/q periodic
and if the peaks observed are Dirac peaks or are diverging with a power law as our result
suggests. The asymptotic result (22) is also a complement to approximations given in BM’s
work, and also in a different way by [19] where the central limit theorem is used to compute the
fixed-point function of an implicit equation giving the probability distribution for an effective
Hamiltonian. One of BM’s approximations is based on a single-defect approximation, which
consists in allowing fluctuations of the connectivity of a single site within an effective medium.
They were able to find numerically the peaks in the localized region and gave the value of the
different weights for a given N with a good approximation. In [19], peaks seem not to diverge
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for large λ, they appear to be rounded, but they are observed with a shift to the right as noted
by the author. In the small-λ limit, peaks seem to be sharper, but the central limit theorem
may not work in this case, even if the positions of these peaks are correct. Interestingly the
correct shape of the distribution in the delocalized region is found with high accuracy.
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